Inflection point

In differential calculus, an inflection point, point of inflection, or inflection (inflexion) is a point on a curve at which the curvature or concavity changes sign. The curve changes from being concave upwards (positive curvature) to concave downwards (negative curvature), or vice versa. If one imagines driving a vehicle along a winding road, inflection is the point at which the steering-wheel is momentarily "straight" when being turned from left to right or vice versa.

Contents

Equivalent forms

The following are all equivalent to the above definition:

A necessary but not sufficient condition

If x is an inflection point for f then the second derivative, f″(x), is equal to zero if it exists, but this condition does not provide a sufficient definition of a point of inflection. One also needs the lowest-order non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection. (An example of such a function is y = x4).

It follows from the definition that the sign of f′(x) on either side of the point (x,y) must be the same. If this is positive, the point is a rising point of inflection; if it is negative, the point is a falling point of inflection.

Categorization of points of inflection

Points of inflection can also be categorised according to whether f′(x) is zero or not zero.

An example of a saddle point is the point (0,0) on the graph y = x3. The tangent is the x-axis, which cuts the graph at this point.

A non-stationary point of inflection can be visualised if the graph y = x3 is rotated slightly about the origin. The tangent at the origin still cuts the graph in two, but its gradient is non-zero.

Note that an inflection point is also called an ogee, although this term is sometimes applied to the entire curve which contains an inflection point.

Asymptotic functions

Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. Take, for example, the function 2x2/(x2 – 1). It is concave up when |x| > 1 and concave down when |x| < 1. However, it has no points of inflection because 1 and -1 are not in the domain of the function.

See also

References

External links